

## Commercial Crew Program Status

NAC Commercial Space Committee

Ed Mango

## Commercial Crew Program Objectives



#### Commercial LEO Capability

- Public Purpose
  - Competed, funded SAAs to advance industry CTS capabilities

#### ISS Design Reference Mission

- NASA Need
  - NASA certification contracts
  - ISS services contract



## CCiCap Overview

## Summary of CCiCAP Portfolio



- Diversity of spacecraft types and launch vehicles
  - Two basic types of spacecraft
    - Capsules and lifting body
  - Two different launch vehicles
    - Falcon 9 and Atlas V
- The portfolio of companies maintains competition for future phases of the program which should produce "best value" for the government
- Significant progress planned for the base period with analysis, integrated design, development, and hardware testing
- ❖ Total set of milestones provide insight into the cost and schedule required to achieve a crewed demonstration flight to low Earth orbit

## Sierra Nevada Corporation



#### Descriptions & Features

- Dream Chaser spacecraft is a reusable, piloted, lifting body, derived from NASA HL-20 concept
  - Carries up to 7 crew members
  - Utilizes non-toxic propellants
  - Primary Launch Site: Cape Canaveral, Florida
  - Primary Landing Site: Shuttle Landing Facility, Florida
  - Abort scenario leverages primary propulsion system with an ability to abort to a runway landing
- Atlas V vehicle launched from the Space Launch Complex 41 launch pad

#### Base Period

- \$212.5M total NASA funding for 9 milestones
- Significant progress toward completion of critical design
- Two major safety reviews and significant subsystem technology maturation and hardware testing



Artist rendition of Dream Chaser and Atlas V on launch pad







Artist rendition of Dream Chaser landing on a runway

## Sierra Nevada Corporation



#### Base Period Details (Key Milestones)

- Design and Development:
  - Program Implementation
  - Integrated System Baseline Review
  - Two Integrated System Safety Analysis
  - Certification Plan
- Testing:
  - Engineering Test Article Flight(s)
  - Wind Tunnel Risk Reduction
  - Spacecraft Subsystem Risk Reduction
  - Main Propulsion Risk Reduction
  - Reaction Control System Risk Reduction

## Space Exploration Technologies Corporation (SpaceX)



#### Descriptions & Features

- Spacecraft uses a crewed version of the SpaceX Dragon capsule
  - Carries up to 7 crew members
  - Primary Launch Site: Cape Canaveral, Florida
  - Primary Landing Site: "On land" landing, specific landing site in work
  - Integrated, side-mounted launch abort system utilizing SuperDraco engines
- Upgraded Falcon 9 vehicle launched from the Space Launch Complex 40 launch pad
- Mid calendar year 2015 crewed test flight (dependent on funding and technical progress)

Artist rendition of Dragon attached to ISS





Artist rendition of Dragon reentering Earth's atmosphere

#### Base Period

- \$440M total NASA funding for 14 milestones
- Culminates in an integrated critical design review milestone
- Includes a pad abort test and an in-flight abort test

Picture of Falcon 9 rocket on launch pad in Florida



## Space Exploration Technologies Corporation (SpaceX)



- Base Period Details (Key Milestones)
  - Design and Development:
    - Integrated System Requirements Review
    - Ground Systems & Ascent Preliminary Design Review
    - Test Reviews for Pad Abort & In-Flight Abort
    - Human Certification Plan Review
    - On-Orbit & Entry Preliminary Design Review
    - Safety Review
    - Flight Review of Upgraded Falcon 9
    - Integrated Critical Design Review
  - Testing:
    - Dragon Primary Structure Qualification
  - Flight tests:
    - Pad Abort (SLC 40 and last quarter of 2013)
    - In-Flight Abort (SLC 40 and 2nd quarter of 2014)

## The Boeing Company



#### Descriptions & Features

- CST-100 spacecraft is a reusable capsule design utilizing many proven flight components
  - Carries up to 7 crew members
  - Primary Launch Site: Cape Canaveral, Florida
  - Primary Landing Site: "On Land" landing, specific landing site in work
  - "Pusher" launch abort system
- Atlas V launch vehicle using the dual engine Centaur upper stage configuration and launched from the Space Launch Complex 41 launch pad
- Late calendar year 2016 crewed test flight (dependent on funding and technical progress)

#### Base period

- \$460M total NASA funding for 19 milestones
- Culminates in an integrated critical design review milestone
- Significant propulsion system, avionics, and wind tunnel development and testing



Artist rendition of the CST-100 spacecraft

Artist rendition of CST-100 and Atlas V on the launch pad





Successful parachute drop test accomplished during CCDev2

### The Boeing Company



#### Base Period Details (Key Milestones)

- Design and Development:
  - Integrated System Review
  - Production Design
  - Phase 1 Safety Review Board
  - Landing & Recovery/Ground Communication Design
  - Launch Vehicle Adapter Design
  - Certification Plan Review
  - SW Critical Design Review
  - System Critical Design Review
- Testing:
  - Integrated Stack Force & Moment Wind Tunnel
  - Dual Engine Centaur Development
  - Orbital Maneuvering & Attitude Control Engine Development
  - Mission Control Center Interface Demonstration
  - Emergency Detection System Standalone
  - Avionics SW Integration Lab Multi-String Demonstration
  - Pilot-in-the-Loop Demonstration

## Commercial Crew Program Objectives



#### Commercial LEO Capability

- Public Purpose
  - Competed, funded SAAs to advance industry CTS capabilities

#### ISS Design Reference Mission

- NASA Need
  - NASA certification contracts
  - ISS services contract





# NASA/ISS Certification Overview

## Presented at Program Forum in February 2012



| F                                 | Y10                                             | FY11  | FY12     | FY13   | FY14 | FY15        | FY16       | FY17       |
|-----------------------------------|-------------------------------------------------|-------|----------|--------|------|-------------|------------|------------|
| CCDev1<br>Element<br>Design       | Blue Or<br>Boeing<br>Paragor<br>Sierra N<br>ULA | 1     |          |        |      |             |            |            |
| CCDev2<br>Element<br>Design       |                                                 | Boeir | a Nevada |        |      |             |            |            |
| Integrated<br>Capability<br>iCap* |                                                 |       |          | CCiCap |      | Optional Mi | lestones   | ]          |
| Certificati                       |                                                 |       |          |        |      | NASA Cort   | lification | ISS Missio |

Certification and Initial ISS Missions\*

--Notional--

| NASA Certification | ISS Missions |
|--------------------|--------------|
|                    | -·-·-        |

Transition to Services



\*Number of awards to conform to budget

## Revised Acquisition Strategy (2012)



| FY12 FY13 FY14  Commercial Crew Tra                     | nsportation System Developm                            | FY17 FY18  nent                   |
|---------------------------------------------------------|--------------------------------------------------------|-----------------------------------|
| AFP Integrated Capability SAA (iCap)                    | Optional Milestones                                    |                                   |
| Certification for                                       | ISS Crew Transportation                                |                                   |
| Phase 1  Alignment with NASA certification requirements | Phase 2                                                | <b>→</b>                          |
| RFP Certification Products Contract                     | Verification, validation, test and final certification | Certification to include at least |
| Notional ISS Crew Tr                                    | certification Contract                                 | one crewed ISS mission            |
| 101101.                                                 | RFP ISS Service                                        | ces Contract                      |

#### Phase 1 – Certification Products Contracts (CPC)



- Contract Objective Begin early, critical certification work to meet NASA Crew Transportation System (CTS) requirements
  - Maturing key certification products in Phase 1 enables industry readiness and level of maturity required for NASA evaluation of Phase 2
    - Allows technical interchanges between NASA and contractors on certification requirements
    - Alternate Standards
    - Hazard Analyses/Reports
    - Verification & Validation Plan
    - Certification Plan
  - Begin the process of ISS visiting vehicle integration
  - No design/development work funded through CPC
  - Increases confidence in ISS services date

#### Phase 2 – Certification Contract



- Contract Objective Enabling NASA to assess and approve the CTS capability to perform the NASA ISS DRM
- Completion of key products required for the NASA crewed mission to the ISS
  - Ensure NASA mission and safety objectives are achieved
  - Activities include:
    - Development
    - Test
    - Evaluation
    - Certification
  - Options may include a nominal number of crewed missions to the ISS following successful CTS Certification
  - Phase 2 activities will lead to a competitive acquisition for commercial ISS transportation services using a FAR-based fixed price contract



